

U.S. DEPARTMENT OF ENERGY

SMARTMOBILITY

Systems and Modeling for Accelerated Research in Transportation

Focused Validation of Select SMART Simulation Activities

Michael Duoba, Simeon Iliev, Eric Rask
Argonne National Laboratory
Vehicle Technologies Office - 2018 Annual Merit Review
June 19, 2018

Overview

Timeline

Project start: 1 Oct 2017

Project end: 30 Sep 2018

Budget

FY 2018: \$165k (100% DOE)

Barriers

- Difficulty in sourcing accurate and traceable real-world data
- Accurately measuring transportation system impacts (data quality insights)
- Constant advances in technology drive unexpected CAV consequences

Partners / Stakeholders

- DOE-SMART Consortium:
 - ANL
 - INL
 - LBNL
 - NREL
 - ORNL

Objective

Objective: Support validation/data needs of SMART projects

- 1. Validation/quantification of select vehicle-level CAV impacts
- 2. Investigation of data sampling/quality sensitivities relevant to SMART
- 3. Provide POC data collection strategies for requested data

DOE Energy Efficient Mobility System (EEMS) Strategic Goals

STRATEGIC GOAL #1
Develop new tools,
techniques, & core
capabilities to
understand & identify
the most important
levers to improve the
energy productivity of
future integrated
mobility systems.

STRATEGIC GOAL #2
Identify & support early
stage R&D to develop
innovative technologies
that enable energy
efficient future mobility
systems.

STRATEGIC GOAL #3
Share research insights, and coordinate and collaborate with stakeholders to support energy efficient local and regional transportation systems.

Project Approach

- Dynamometer based testing of A-to-B drive-cycles (CAV to non-CAV behaviors)
 with sufficient repeats to draw meaningful conclusions
 - Validate previous CAV impacts drawn from earlier literature and bounding reports
 - Aid in validation of specific SMART research projects (in collaboration with PIs)
- Utilize ANL's research fleet of instrumented CONV., HEV, PHEV & BEVs and historical data repository for evaluation of data quality/sampling sensitivities and possibilities for expanded data collection (per PI needs)

<u>Source</u>: Joint study by NREL, ANL, and ORNL http://www.nrel.gov/docs/fy17osti/67216.pdf

Milestones

	Q1	Q2		Q3	Q4
Data Quality and Sampling	Tractive Force Sampling and Smoothing issues				
		GPS	•	nicle loads), Batte bling Rate and Qua	
Validation Testing	Validation of Select External CAV References				
	Coordination of Validation Tests with SMART PIs				with SMART PIs
					Dynamometer SMART Results
PoC Instrumentation	Compilation of Data Collection Needs				
	PoC Roadway	Behavior Da	ata	Occi	pancy Estimation
	On-Road Data Collection and Analysis				

Data Quality - Tractive Force Sample Rate Matters

- Typical "detailed" data comes in 1Hz signal stream
- 1 Hz is adequate to define driving style, <u>not</u> adequate to derive a powertrain power trace
- What data needs are required?
- Vehicle network (CAN) data can be used to provide wheel power
- Research underway into sample rate requirements and filtering strategy

Data Quality – Sampling Recommendations (on-going)

- Using ANL road data, vehicle force can be calculated with clean CAN MPH data at 2-2.5 Hz
- Best results from 10 Hz data: Savitzky–Golay before and after force calculation (6 side pts, 2nd order)
- Current work on GPS data: Higher sample rate (~4Hz) needed
- GPS data requires additional smoothing and glitch detection

Highlighted Validation - Intersection Eco-Approach

Based on simulation study in:

Li, Meng, et al. "Traffic energy and emission reductions at signalized intersections: a study of the benefits of advanced driver information." International Journal of Intelligent Transportation Systems Research 7.1 (2009): 49-58.

- Compare fuel consumption for three different methods to approach an intersection with complete stop and idle, then constant acceleration up to cruise speed:
 - 1. Medium deceleration (similar to human driver)
 - 2. Light deceleration (w/ light braking force)
 - 3. Coast to stop (no use of brakes until the end)

Highlighted Validation - Intersection Eco-Approach (2)

- F150 (No Idle Stop): Fuel consumption benefits are greater than the benefits predicted in the reference study.
- F150 (Idle Stop): Fuel consumption benefits for are less than the benefits predicted in the reference study.

	Fuel Co	nsumption	Comparison		
	Simulation	Simulation	Ford F150 (Start-	Ford F150 (Start-	
Column1	Veh 1	Veh 2	Stop Disabled)	Stop Enabled)	
Approach 1 vs					
Const. Speed	154.3%	166.3%	186.1%	116.4%	
Approach 2 vs Const. Speed	132.0%	145.7%	159.3%	102.3%	Stop for red light vs. pass on green light
Approach 3 vs Const. Speed	N/A	N/A	152.9%	101.4%	
Approach 2 vs 1	-8.7%	-7.7%	-9.4%	-6.5%	Eco-approach vs.
Approach 3 vs 1	N/A	N/A	-11.6%	-7.0%	normal approach
		Υ——		$\overline{}$,
	Simula	tion results	Dyno	testing results	
	from lit	terature	from	Argonne	

- Toyota Prius Prime (HEV): Fuel consumption benefits much greater than the benefits predicted in the reference study.
- Fuel/energy consumption penalty for stopping at the intersection is less than 25% of the penalty incurred by the vehicles in the reference study.

	Simulation Veh 1		Prius Prime (HEV Mode)	Prius Prime (EV Mode)		
Approach 1 vs Const. Speed	154.3%	166.3%	37.6%	40.6%		
Approach 2 vs Const. Speed	132.0%	145.7%	17.6%	23.9%	}	Stop for red light v pass on green light
Approach 3 vs Const. Speed	N/A	N/A	10.4%	16.6%	J	
Approach 2 vs 1	-8.7%	-7.7%	-14.5%	-11.9%	}	Eco-approach vs.
Approach 3 vs 1	N/A	N/A	-19.8%	-17.1%	J	поппатарргоасп
		Υ		$\overline{}$		
	Simulat from lit	ion results erature		testing results Argonne		

Highlighted Validation - Eco-Approach and Launch

Based on simulation study in:

M. Barth, S. Mandava, K. Boriboonsomsin and H. Xia, "Dynamic ECO-driving for arterial corridors," 2011 IEEE Forum on Integrated and Sustainable Transportation Systems, Vienna, 2011, pp. 182-188. doi: 10.1109/FISTS.2011.5973594

- Compare fuel consumption for four different methods:
 - 1.Continuous deceleration all the way up to the intersection
 - 2.Light deceleration w/ 15 seconds constant speed cruise to intersection
 - 3.Medium deceleration w/ 20 seconds constant speed cruise to intersection
 - 4. Hard deceleration w/ 23 seconds constant speed cruise to intersection

Highlighted Validation - Eco-Approach and Launch (2)

Toyota Prius Prime (HEV and EV Modes)

- Sharper deceleration profiles have slightly lower consumption than the continuous deceleration profile due to the lower energy losses during the acceleration phase:
 - Regen energy from slowing down is roughly the same for all 4 four approaches.
 - Energy consumed during the cruise phase increases with increased cruise time
 - Energy consumed during acceleration decreases as the drive profile cruise speed increases
- There is very little difference in energy consumption for the three profiles with sharp braking and constant speed cruise.

Highlighted Validation - Eco-Approach and Launch (3)

Ford F150:

- Fuel consumption benefits for ecoapproach with sharper initial deceleration vs. light, continuous deceleration are significantly lower than the benefits predicted in the reference study.
- Unlike the reference, the highest fuel consumption benefit occurs for approach 3, not approach 4 with the sharpest braking.
 - The fuel consumption benefits for speed profiles 2 through 4 do not follow the same, increasing trend as in the simulation study by Barth et al.

Eco-Approach and Launch: Fuel Consumption Comparison

			•
	Simulation Vehicle	Ford F150	
Approach 2 vs 1	-7.9%	-0.5%)
Approach 2 vs 1	-7.570	-0.570	Decel and cruise
Approach 3 vs 1	-9.3%	-5.0%	continuous decel
Approach 4 vs 1	-13.2%	-2.7%	J
	$\overline{}$	$\overline{}$,
	Simulation results	Dyno testing	g results
	from literature	from Argon	ne

POC Data Collection – Collecting On-Road Information about Surrounding Driver Behavior

 Coordinated video and CAN logging from ACC system can offer insights into multiple vehicles

Vehicle-as-Sensor Hardware Overview

POC Data Collection – Traffic Light Approach Behavior for Multiple Vehicles

Partnerships / Collaborations

DOE SMART - National Laboratory Partners:

- Primary Participants: ORNL, ANL, INL, LBNL, NRELC
- Specific CAV Subprojects:
 - 2B Aggregation Methods to Estimate National-Level Impacts of CAVs Scenarios
 - ➤ 2.1 Multi-Scale, multi-scenario assessment of system optimization opportunities due to vehicle connectivity and automation (ST 1&2)
 - ➤ 3.2 Experimental Evaluation of Eco-Driving Strategies and Cooperative ACC
- Coordination other DOE SMART Mobility pillars where/when applicable: AFI, CAVs, MDS, US

Proposed Future Work

Sampling Rate and Data Quality

- Comparison of fuel rate signal quality and availability across vehicles
- Sampling and collection needs for CAVs perception data (i.e. LIDAR traces, etc.)

Experimental Validation

- Improved coordination of validation efforts with SMART PIs —> Moving toward integrating/emulating scenarios used in analysis
- Highlighted emerging external references as incorporated by SMART projects
- On-road, on-track, and fleet validation and data collection support of select CAV technologies/approaches (alongside other SMART researchers)

Expanded Data Collection Needs

- Accessory power associated with the range of CAV capabilities is a large source of uncertainty (especially HAVs)
- Applicability of capabilities within other SMART pillars (i.e. Multi-Modal)

Summary

Relevance

Quality validation and exploratory data is critical to SMART efforts

Relevance

Approach

- Laboratory testing of CAV behaviors across a range of P-Trains
- Use existing, high-fidelity data repository as ground-truth to investigate relevant issues regarding sampling and data quality

Approach

Highlighted Accomplishments

- Tractive force sampling investigation
- Validation of select CAV references across a range of recent vehicle technologies and vehicles (HEVs, start-stop, pick-up)
- POC instrumentation can record on-road vehicle behaviors coordinated with system state information (ie traffic light)

Accomplishments

Future work

Future/On-going work

Continued support for SMART data and validation needs

